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A nonlinear response theory is developed and applied to electrostatic interactions between spherical macro-
ions, screened by surrounding microions, in charge-stabilized colloidal suspensions. The theory describes
leading-order nonlinear response of the microions(counterions, salt ions) to the electrostatic potential of the
macroions and predicts microion-induced effective many-body interactions between macroions. A linear re-
sponse approximation[A. R. Denton, Phys. Rev. E62, 3855 (2000)] yields an effective pair potential of
screened-Coulomb(Yukawa) form, as well as a one-body volume energy, which contributes to the free energy.
Nonlinear response generates effective many-body interactions and essential corrections to both the effective
pair potential and the volume energy. By adopting a random-phase approximation(RPA) for the response
functions, and thus neglecting microion correlations, practical expressions are derived for the effective pair and
triplet potentials and for the volume energy. Nonlinear screening is found to weaken repulsive pair interactions,
induce attractive triplet interactions, and modify the volume energy. Numerical results for monovalent micro-
ions are in good agreement with availableab initio simulation data and demonstrate that nonlinear effects grow
with increasing macroion charge and concentration and with decreasing salt concentration. In the dilute limit of
zero macroion concentration, leading-order nonlinear corrections vanish. Finally, it is shown that nonlinear
response theory, when combined with the RPA, is formally equivalent to the mean-field Poisson-Boltzmann
theory and that the linear response approximation corresponds, within integral-equation theory, to a linearized
hypernetted-chain closure.
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I. INTRODUCTION

Electrostatic interactions between charged macromol-
ecules dispersed in an electrolyte solvent have attracted sus-
tained cross-disciplinary interest because of their fundamen-
tal role in governing the physical properties of colloidal
suspensions[1–3], polyelectrolyte solutions[4,5], and many
biological systems. Colloids(nanometer-micron-sized par-
ticles) and polyelectrolytes(charged polymers) can acquire
charge in solution through dissociation of counterions. Fa-
miliar examples of charged colloids are latex or silica micro-
spheres, clay platelets, and ionic micelles suspended in wa-
ter. Common polyelectrolytes are polyacrylic acid, found in
gels and rheology modifiers, and biopolymers(e.g., DNA,
proteins, starches) in aqueous solution. In all of these sys-
tems, bare Coulomb interactions between charged macro-
molecules(macroions) are screened by counterions and salt
ions (microions). This paper formulates a general response
theory of microion screening and applies the theory to
microion-induced effective pair and many-body interactions
between colloidal macroions in suspension.

In recent years, experimental reports of apparent attrac-
tions between like-charged macroions have focused attention
on electrostatic interactions in strongly charged, deionized
suspensions. Observations of anomalous thermodynamic be-
havior, such as bulk phase separation[6–9] and metastable
crystallites[10], and direct measurements of attractive inter-
actions between confined macroions[11,12] have motivated

many theoretical and computer simulation studies, which
have been recently reviewed[13–16].

A variety of simulation methods have been applied to ex-
plore effective interparticle interactions and phase behavior
in charged colloids. Standard molecular dynamics and Monte
Carlo [18–20] algorithms have been used to investigate crys-
tallization in effective one-component pairwise-interacting
systems, while powerfulab initio (classical Car-Parrinello)
[21,22] and multicomponent Monte Carlo[23–26] tech-
niques have modeled effective interactions and, to a lesser
degree, phase behavior.

Theoretical approaches can be broadly distinguished by
the extent to which they include correlations between micro-
ions. Many approaches are founded on the Poisson-
Boltzmann (PB) equation for the electrostatic potential,
which is derived from mean-field approximations that ne-
glect microion correlations. The classic theory of Derjaguin
and Landau[27] and Verwey and Overbeek[28] (DLVO),
based on a linearization of the PB equation, predicts that
widely separated macroions interact via a purely repulsive
effective electrostatic pair potential of screened-Coulomb
(Yukawa) form. Similar effective interactions have been de-
rived within the frameworks of density-functional(DF)
theory [22,29–31], response theory[32–34], and extended
Debye-Hückel theories[35,36]. These more recent ap-
proaches also clarify the importance of a one-body volume
energy[29–36], which contributes a state-dependent term to
the free energy and thus can influence thermodynamic be-
havior.

Microion correlations, while often weak for monovalent
microions, generally cannot be ignored in the case of multi-*Electronic address: alan.denton@ndsu.nodak.edu
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valent microions, as emphasized in several recent studies of
charged colloids and polyelectrolytes[25,37–41]. Microion
correlations can induce short-range attractions, which have
been linked to condensation of DNA and other polyelectro-
lytes [37–39,42]. Another wide class of theories that include
some microion correlations is the class of integral-equation
theories[43–49], which predict multicomponent correlation
functions from the Ornstein-Zernike relation combined with
various closures.

Many theoretical approaches rely, in practice, on some
manner of linear approximation. DLVO theory and linearized
PB cell models[50–52] are based on the linearized PB equa-
tion. The DF [29–31] and response theory[32–34] ap-
proaches involve truncating expansions of free energy func-
tionals or of microion density profiles. While linear
approximations can be justified under a wide range of con-
ditions, their validity may be questioned for concentrated
suspensions of highly charged macroions at low salt concen-
trations (ionic strengths)—precisely those conditions under
which anomalous phase behavior has been reported. On the
other hand, many nonlinear theories, such as the full PB
theory[53–55] and integral-equation theories, present severe
computational challenges. In fact, the nonlinear PB equation
usually yields to numerical solution only within cell models
with simplified boundary conditions.

The main purpose of the present paper is to extend re-
sponse theory to include leading-order nonlinear microion
screening and to apply the extended theory to systematically
test the linear-screening approximation. This extension nec-
essarily entails three-body effective interactions between
macroions and corrections at the pair and one-body levels,
for which computationally practical expressions are derived.
The predicted effective interactions could, in future studies,
be input directly into statistical mechanical theories or simu-
lations to study influences of nonlinear screening on phase
equilibria and other phenomena.

The key qualitative conclusion of the paper is that nonlin-
ear effects can significantly modify effective interactions, be-
coming increasingly important with increasing macroion
charge and concentration and with decreasing salt concentra-
tion. Numerical calculations for bulk suspensions are per-
formed to quantify parameter ranges wherein linearization is
justified. Comparison is made with a similar extension of the
DF approach, recently applied to wall-induced effective pair
interactions[56,57] and to effective triplet interactions[58].

Outlining the remainder of the paper, Sec. II defines the
model colloidal suspension; Sec. III develops a general re-
sponse theory for the system; Sec. IV presents analytical
results for leading-order nonlinear corrections to the effec-
tive microion-induced interactions; Sec. V presents numeri-
cal results, for selected parameters, and comparisons with
predictions of linear response theory; Sec. VI summarizes
the paper; and finally the Appendix compares response
theory with two related approaches, namely PB theory and
integral-equation theory.

II. MODEL

The system of interest comprises colloidal macroions,
counterions, and salt ions dispersed in a solvent(Fig. 1). This

multicomponent mixture is modeled here as a collection of
Nm charged hard-sphere macroions, of valence −Z (surface
charge −Ze) and radiusa (diameters=2a), and Nc point
counterions of valencez in an electrolyte solvent of volume
V at temperatureT. Global charge neutrality constrains mac-
roion and counterion numbers via the relationZNm=zNc. For
simplicity, we assume a symmetric electrolyte consisting of
Ns point salt ions of valencez and Ns of valence −z (same
valence as counterions) in a uniform solvent. The microions
thus numberN+=Nc+Ns positive andN−=Ns negative, for a
total of Nm=Nc+2Ns. The solvent is approximated, within
the primitive model, as a dielectric continuum, characterized
entirely by a dielectric constante.

The macroion charge, which may be physically inter-
preted as an effective(renormalized) charge, is assumed to
be fixed and distributed smoothly over the particle surface.
Charge discreteness can be reasonably neglected if the dis-
tance between neighboring macroion surfaces much exceeds
the typical distance between charge groups on a macroion
surface, roughlys /ÎZ. The assumption of point microions
limits the model to systems with large size asymmetries. Fur-
thermore, we neglect polarization effects, e.g., charge-
induced dipole interactions[59–61], which are shorter-
ranged than charge-charge interactions, and which vanish if
solvent and macroions have the same dielectric constant(i.e.,
are index matched).

III. THEORY

A. Reduction to one component

The response theory of effective interactions is fundamen-
tally based on a reduction of the multicomponent mixture to
an equivalent one-component system by integrating out the
degrees of freedom of the microions[62]. In this reduction,
the macroions are regarded as applying an “external” poten-
tial that perturbs the(otherwise uniform) microion distribu-
tion. For a sufficiently weak perturbation(dilute or weakly
charged macroions), the microions respond linearly. The lin-
ear response approximation has been discussed in Refs.
[32–34]. Upon increasing the macroion charge or concentra-
tion, however, nonlinear microion response becomes increas-

FIG. 1. Primitive model of a charged colloidal suspension: hard
macroions(valence −Z and diameters) and point microions(coun-
terions and salt ions) in a dielectric continuum(not shown).

A. R. DENTON PHYSICAL REVIEW E 70, 031404(2004)

031404-2



ingly important. This motivates the current extension of re-
sponse theory from linear to nonlinear response.

To simplify the derivation, we first consider salt-free sus-
pensions and introduce salt ions only at the end. The model
system is then described by a HamiltonianH that decom-
poses naturally into three terms

H = HmshRjd + Hcshr jd + HmcshRj,hr jd, s1d

wherehRj and hr j denote the coordinates of macroions and
microions, respectively. The first term on the right side of
Eq. (1) is the bare macroion Hamiltonian, given by

Hm = HHSshRjd + 1
2 o

iÞ j=1

Nm

vmmsuRi − R jud, s2d

whereHHS is the Hamiltonian for neutral hard spheres(the
macroion hard cores) andvmmsrd=Z2e2/er, r .s, is the bare
Coulomb pair interaction between macroions. In the primi-
tive model, the solvent acts only to reduce the strength of
Coulomb interactions by a factor 1/e. The second term of the
Hamiltonian

Hc = Kc +
1

2 o
iÞ j=1

Nc

vccsur i − r jud, s3d

describes the counterions alone, having kinetic energyKc
and interacting via a Coulomb pair potentialvccsrd=z2e2/er.
The third term is the macroion-counterion interaction energy

Hmc= o
i=1

Nm

o
j=1

Nc

vmcsuRi − r jud, s4d

wherevmcsrd is the macroion-counterion electrostatic pair in-
teraction:vmcsrd=Zze2/er, r .a. For impenetrable hard-core
macroions, the form ofvmcsrd inside the core is arbitrary and
can be specified so as to minimize counterion penetration
inside the cores(see Sec. IV A). For later reference, we note
that the macroion and counterion Hamiltonians[Eqs.(2) and
(3)] may be expressed in terms of Fourier components using
the identity

o
iÞ j=1

N

vsur i − r jud =
1

Vo
k

v̂skdfr̂skdr̂s− kd − Ng, s5d

wherev̂skd is the Fourier transform of a pair potentialvsrd,
r̂skd is the Fourier transform of the appropriate(macroion or
counterion) number density operatorrsr d=oi=1

N dsr −r id, and
the Fourier transform convention is

r̂skd =E dr rsr de−ik·r , s6ad

rsr d =
1

V
o
k

r̂skdeik·r . s6bd

The inverse transform is expressed as a summation, rather
than an integral, in anticipation that charge neutrality will
necessitate singling out thek=0 component for special treat-
ment.

At constant temperature and volume, the thermodynamic
behavior of the system is governed by the canonical partition
function

Z = kkexps− bHdlclm, s7d

whereb=1/kBT and klc and klm denote classical traces over
counterion and macroion coordinates, respectively. The two-
component mixture of macroions and counterions can be for-
mally mapped onto an equivalent one-component system of
“pseudomacroions” by performing a restricted trace over
counterion coordinates, keeping the macroions fixed. Thus,
without approximation

Z = kexps− bHeffdlm, s8d

where Heff=Hm+Fc is the effective Hamiltonian of the
equivalent one-component system and

Fc = − kBT lnkexpf− bsHc + Hmcdglc s9d

can be interpreted as the free energy of a nonuniform gas of
counterions in the presence of the fixed macroions. To sim-
plify notation, we henceforth omit the subscriptc from the
trace over counterion coordinates:klc;kl.

B. Response theory

Although the one-component mapping is exact, the chal-
lenge now shifts to approximating the counterion free energy
Fc. Progress can be made by regarding the macroions as an
“external” potential for the counterions and invoking pertur-
bation theory[32,63]:

Fc = F0 +E
0

1

dl kHmcll, s10d

whereF0=−kBT lnkexps−bHcdl is the reference free energy
of the counterions in the presence of neutral(hard-core) mac-
roions (the counterions then being unperturbed, except for
exclusion from the macroion cores), kll denotes a trace over
coordinates of the counterions in the presence of macroions
charged to a fractionl of their full charge, and thel-integral
adiabatically charges the macroions from neutral to fully
charged. Although each term on the right side of Eq.(10) is
infinite, the infinities cancel to yield a finite counterion free
energy. When the macroions are uncharged, the surrounding
“sea” of counterions has uniform density, neglecting any
confinement-induced structure, which is reasonable for typi-
cal counterion concentrations in colloidal suspensions(see
below). As the macroion charge is “turned on,” the counte-
rions respond, redistributing themselves to form a double
layer (surface charge plus neighboring counterions) sur-
rounding each macroion.

In practice, it proves convenient to convertF0 to the free
energy of a classical one-component plasma(OCP) by add-
ing and subtracting the energy of a uniform compensating
negative background. The background energy can be ex-
pressed asEb=−1

2Ncncv̂ccs0d, wherenc is the average density
of counterions in the volume unoccupied by the macroion
cores. Note that the infinite background energy formally can-
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cels the infinities on the right side of Eq.(10). Because the
counterions are excluded(with the background) from the
hard macroion cores, the OCP has average densitync
=Nc/V8, wheren=sp /6dsNm/Vds3 is the macroion volume
fraction andV8=Vs1−hd is the free volume. Thus,

Fc = FOCP+E
0

1

dlkHmcll − Eb, s11d

where FOCP=F0+Eb is the free energy of the OCP in the
presence of neutral, but volume-excluding, hard spheres—
what might be loosely called a “Swiss cheese” OCP.

In terms of Fourier components, the macroion-counterion
interaction can be expressed as

kHmcll =
1

V8
o

k
v̂mcskdr̂mskdkr̂cs− kdll. s12d

Evidently, kHmcll depends throughkr̂cskdll upon the re-
sponse of the counterions to the macroion charge density.
Note, however, that there is no response fork=0, since
r̂cs0d=edr rcsr d=Nc, which is fixed by charge neutrality for
a given macroion concentration. Taking thisk→0 limit into
account, and subtracting the background energy, Eq.(12)
becomes

kHmcll − Eb =
1

V8
o
kÞ0

v̂mcskdr̂mskdkr̂cs− kdll

+ nclim
k→0

FNmv̂mcskd +
Nc

2
v̂ccskdG . s13d

To proceed further, we apply a perturbative approximation
for the macroion-induced counterion density, adapting a stan-
dard approach from the theory of metals[63–66]. Defining
the macroion external potentialfextsr d by

zefextsr d =E dr 8 vmcsur − r 8udrmsr 8d, s14d

the ensemble-averaged induced counterion density may be
expanded in a functional Taylor series aroundfextsr d=0 [67]
in powers of the dimensionless potentialusr d=−bzefextsr d:

krcsr dl = r0 + o
n=1

`
1

n!
E dr 1 ¯E dr n Gsn+1dsr − r 1, . . . ,

r − r ndusr 1d ¯ usr nd. s15d

Herer0 is a constant, chosen below to ensure charge neutral-
ity, and the coefficients

Gsn+1dsr − r 1, . . . ,r − r nd = lim
u→0

F dnkrcsr dl
dusr 1d ¯ dusr ndG s16d

are thesn+1d-particle density correlation functions[63] of
the unperturbed(uniform) OCP. The correlation functions
are, in turn, proportional to response functions(see below).
To give a physical interpretation to Eq.(15), the counterion
density induced at any pointr is the net response to
macroion-generated external potentials, applied at sets of
pointshr 1, . . . ,r nj, and propagated through the OCP via mul-

tiparticle density correlations. Fourier transforming Eq.(15),
we obtain(for kÞ0):

kr̂cskdl = Ĝs2dskdûskd +
1

2V8
o
k8

Ĝs3dsk8,k − k8dûsk8d

3ûsk − k8d +
1

3 ! V82 o
k8,k9

Ĝs4dsk8,k9,k − k8 − k9d

3ûsk8dûsk9dûsk − k8 − k9d + ¯ . s17d

The coefficientsĜsnd, which are Fourier transforms ofGsnd,
are related to then-particle static structure factors of the

uniform OCP viaĜsnd=ncS
snd, where the static structure fac-

tors are explicitly defined by[63]:

Ss2dskd ; Sskd =
1

Nc
kr̂cskdr̂cs− kdl s18d

and

Ssndsk1, . . . ,kn−1d =
1

Nc
kr̂csk1d ¯ r̂cskn−1dr̂cs− k1 − ¯

− kn−1dl, n ù 3. s19d

Substitutingûskd=−bv̂mcskdr̂mskd [from Eq. (14)] into Eq.
(17), the induced counterion density can be expressed in the
equivalent form

kr̂cskdl = xskdv̂mcskdr̂mskd +
1

V8
o
k8

x8sk8,k − k8d

3v̂mcsk8dv̂mcsuk − k8udr̂msk8dr̂msk − k8d + ¯ ,

k Þ 0, s20d

where

xskd = − bncSskd s21d

and

x8sk8,k − k8d = sb2nc/2dSs3dsk8,k − k8d s22d

are, respectively, the linear and the first nonlinear response
function of the uniform OCP. The first term on the right side
of Eq. (20) represents the linear response approximation—
linear in r̂mskd—while the higher-order terms generate, as
shown below, nonlinear corrections to both the counterion
density and the effective interactions. Finally, since the am-
plitude of v̂mcskd is proportional to the macroion charge, then

kr̂cskdll = lxskdv̂mcskdr̂mskd +
l2

V8
o
k8

x8sk8,k − k8dv̂mcsk8d

3v̂mcsuk − k8udr̂msk8dr̂msk − k8d + ¯ ,

k Þ 0. s23d

Note that the response functions describe the response of the
fully charged OCP, and so do not depend on the coupling
constantl.
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C. Effective interactions

We are now positioned to derive formal expressions for
the effective interactions. Substituting Eq.(23) into Eq.(13),
the latter into Eq.(11), and integrating overl, we obtain the
counterion free energy tothird order in the macroion density

Fc = FOCP+ nclim
k→0

FNmv̂mcskd +
Nc

2
v̂ccskdG

+
1

2V8
o
kÞ0

xskdfv̂mcskdg2r̂mskdr̂ms− kd

+
1

3V82o
kÞ0

o
k8

x8sk8,− k − k8dv̂mcskdv̂mcsk8d

3v̂mcsuk + k8udr̂mskdr̂msk8dr̂ms− k − k8d. s24d

Evidently, the linear and first nonlinear response terms in the
expansion ofkr̂cskdl generate terms inFc that are, respec-
tively, quadratic and cubic inr̂mskd. These terms can be re-
lated to effective pair and triplet interactions between mac-
roions. To this end, we first identify

v̂ind
s2dskd = xskdfv̂mcskdg2 s25d

as the counterion-induced macroion-macroion pair interac-
tion in the linear response approximation[32–34]. In pass-
ing, we note that Eq.(25) is similar in structure and physical
interpretation to induced interactions recently derived from a
coarse-grained hypernetted-chain(HNC) theory [49] and
from a cumulant expansion of the counterion partition func-
tion [68]. Combining the induced interaction with the bare
Coulomb interaction yields the linear-response prediction for
the total effective pair interaction

v̂0
s2dskd = v̂mmskd + v̂ind

s2dskd. s26d

Now the term on the right side of Eq.(24) that is second-
order in r̂mskd may be manipulated using the identity[from
Eq. (5)]:

o
iÞ j=1

Nm

vind
s2dsuRi − R jud =

1

V8
o
kÞ0

v̂ind
s2dskdr̂mskdr̂ms− kd

+
Nm

2

V8
lim
k→0

v̂ind
s2dskd − Nmvind

s2ds0d.

s27d

Similarly, identifying

v̂eff
s3dsk,k8d = 2x8sk8,− k − k8dv̂mcskdv̂mcsk8dv̂mcsuk + k8ud

s28d

as an effective three-body interaction, arising from nonlinear
counterion response, and using the identity

o
iÞ jÞk=1

Nm

veff
s3dsRi − R j,Ri − Rkd =

1

V82o
k

o
k8

v̂eff
s3dsk,k8d

3fr̂mskdr̂msk8dr̂ms− k − k8d

− 3r̂mskdr̂ms− kd + 2Nmg,

s29d

the final (third-order) term in Eq.(24) may be rewritten as

1

3! V82o
k

o
k8

v̂eff
s3dsk,k8dr̂mskdr̂msk8dr̂ms− k − k8d

−
Nm

3! V82o
k

v̂eff
s3dsk,0dr̂mskdr̂ms− kd

=
1

3! o
iÞ jÞk

Nm

veff
s3dsRi − R j,Ri − Rkd

+
1

2V82o
k

o
k8

v̂eff
s3dsk,k8dr̂mskdr̂ms− kd

−
Nm

3V82o
k

o
k8

v̂eff
s3dsk,k8d

−
Nm

3! V82o
k

v̂eff
s3dsk,0dr̂mskdr̂ms− kd. s30d

Combining Eqs.(24) and(30), and again invoking the iden-
tity in Eq. (5), the effective Hamiltonian acquires the follow-
ing physically intuitive structure:

Heff = HHS +
1

2 o
iÞ j=1

Nm

veff
s2dsuRi − R jud

+
1

3! o
iÞ jÞk=1

Nm

veff
s3dsRi − R j,Ri − Rkd + E, s31d

whereveff
s2dsrd andveff

s3dsr ,r 8d are, respectively, the counterion-
induced effective pair and triplet interactions in real space
andE is a one-body volume energy. In Eq.(31), the effective
triplet interaction is the Fourier transform of Eq.(28), while
the effective pair interaction is the transform of

v̂eff
s2dskd = v̂0

s2dskd + Dv̂eff
s2dskd, s32d

where

Dv̂eff
s2dskd =

1

V8
o
k8

v̂eff
s3dsk,k8d −

Nm

3V8
v̂eff

s3dsk,0d s33d

is the first nonlinear correction to the linear response ap-
proximation. Note that the second term on the right side of
Eq. (33) can be traced back to the requirement of charge
neutrality, which necessitated special treatment of thek=0
term in Eq.(12).
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The volume energyE—a natural by-product of reduction
to an equivalent one-component system—has no explicit de-
pendence on macroion coordinates. Collecting terms that are
independent of macroion coordinates, the volume energy
takes the form

E = E0 + DE, s34d

where

E0 = FOCP+
Nm

2
vind

s2ds0d + Nmnclim
k→0

Fv̂mcskd −
z

2Z
v̂ind

s2dskd

+
Z

2z
v̂ccskdG s35d

is the linear response approximation[33,34] and

DE =
Nm

6V82Fo
k,k8

v̂eff
s3dsk,k8d − Nmo

k
v̂eff

s3dsk,0dG s36d

is the first nonlinear correction. On the right side of Eq.(35),
the second term represents the interaction of a macroion with
its own counterions. The terms in square brackets on the
right side of Eq.(35) and the second term on the right side of
Eq. (36) originate again from the requirement of charge neu-
trality. We emphasize that nonlinear counterion response
generates not only effective many-body interactions, but also
corrections to both the effective pair interaction and the vol-
ume energy. In fact, as is clear from Eqs.(33) and (36), the
nonlinear corrections toveff

s2dsrd andE are intimately related to
many-body interactions. Note that the volume energy de-
pends nontrivially on the mean macroion density, and thus
can contribute significantly to the total free energy of the
system.

D. Physical interpretation

While the mathematical manipulations of response theory
are simpler in Fourier space, the physical interpretation of
the theory is perhaps more transparent in real space. In terms
of real-space functions, the induced pair interaction, in the
linear response approximation, can be expressed[from Eq.
(25)] as

vind
s2dsrd =E dr 1E dr 2 xsur 1 − r 2udvmcsr1dvmcsur 2 − r ud,

s37d

wherexsur 1−r 2ud is the real-space linear response function,
which describes the change in counterion density induced at
point r 2 in response to an external potential applied atr 1.
Referring to Fig. 2, Eq.(37) can be interpreted as follows.
The external potential due to one macroion(centered at the
origin in Fig. 2) induces at pointr 2 a change in counterion
densityedr 1 xsur 1−r 2udvmcsr1d. This induced density, which
depends(via x) on the pair density correlation function of
the intervening medium(OCP), then interacts with a second
macroion, at displacementr from the first, giving rise to a
counterion-induced pair interaction energy. The linear-
response contribution to the volume energy(per macroion)

associated with macroion-counterion interactions[Eq. (35)]
has a closely related form

vind
s2ds0d =E dr 1E dr 2xsur 1 − r 2udvmcsr1dvmcsr2d, s38d

and a similar physical interpretation, except that the induced
density now interacts back with the first macroion, generat-
ing a one-body energy.

Proceeding from linear to nonlinear response, the effec-
tive triplet interaction can be expressed[from Eq. (28)] as

veff
s3dsr ,r 8d = 2E dr 1E dr 2E dr 3 x8sr 1 − r 3,r 2 − r 3d

3vmcsr1dvmcsur 2 − r udvmcsur 3 − r 8ud. s39d

Again the interpretation is clear: the external potentials due
to two macroions(top two macroions in Fig. 2), separated by
displacementr , induce a change in counterion density at
point r 3. The induced density, which depends viax8 on trip-
let density correlations in the OCP, then interacts with a third
macroion, at displacementr 8 from the first, contributing a
counterion-induced three-particle interaction energy. Consid-
ering now the nonlinear correction to the pair interaction,
and leaving aside the term arising from charge neutrality, the
main contribution can be written[from Eq. (33)] as

Dveff
s2dsrd = 2E dr 1E dr 2E dr 3 x8sr 1 − r 3,r 2 − r 3d

3vmcsr1dvmcsr2dvmcsur 3 − r ud. s40d

The interpretation is analogous to that for the triplet interac-
tion, except that the external potentials at pointsr 1 andr 2 are
now associated with the same macroion. Finally, the nonlin-
ear correction to the volume energy[Eq. (36)], aside from
the charge neutrality term, has the form

FIG. 2. Geometry for the physical interpretation of response
theory (see Sec. III D). Vectors r and r 8 define center-to-center
displacements of macroions. Vectorsr 1, r 2, andr 3 define points at
which either the macroion external potential acts or a change in
microion density is induced.

A. R. DENTON PHYSICAL REVIEW E 70, 031404(2004)

031404-6



DE =
Nm

3
E dr 1E dr 2E dr 3 x8sr 1 − r 3,r 2 − r 3d

3vmcsr1dvmcsr2dvmcsr3d. s41d

The physical meaning ofDE is similar to that ofDveff
s2dsrd,

except that now the density that is induced nonlinearly by
one macroion interacts back with the same macroion, gener-
ating a nonlinear contribution to the one-body energy.

E. Random phase approximation

Further progress towards practical expressions for effec-
tive interactions requires specifying the OCP response func-
tions. For charged colloids, the OCP is typically weakly cor-
related, characterized by relatively small coupling
parameters:G=lB/ac!1, wherelB=bz2e2/e is the Bjerrum
length andac=s3/4pncd1/3 is the counterion-sphere radius.
For example, for macroions of valenceZ=500, volume frac-
tion h=0.01, and monovalent counterions suspended in salt-
free water at room temperature(lB=0.714 nm), we find G
.0.02. For such weakly correlated plasmas, it is
reasonable—at least as regards long-range interactions—to
neglect short-range correlations. We thus adopt the random
phase approximation(RPA), which equates the two-particle
direct correlation function(DCF) to its exact asymptotic
limit: cs2dsrd=−bvccsrd or ĉs2dskd=−4pbz2e2/ek2. In neglect-
ing short-range correlations, the RPA is formally equivalent
to the mean-field PB theory, as shown in the Appendix. Fur-
thermore, we ignore the influence of the macroion hard cores
on the OCP response functions, which is reasonable for suf-
ficiently dilute suspensions. Within the RPA, the OCP(two-
particle) static structure factor and linear response function
take the analytical forms

Sskd =
1

1 − ncĉ
s2dskd

=
1

1 + k2/k2 s42d

and

xskd = − bncSskd =
− bnc

1 + k2/k2 , s43d

wherek=Î4pncz
2e2/ekBT. As shown below, the parameterk

plays the role of the Debye screening constant(inverse
screening length) in the counterion density profile and in the
effective interactions. In the absence of salt, the counterions
are the only screening ions. The macroions themselves, being
singled out as sources of the external potential for the coun-
terions, do not contribute to the density of screening ions.
Fourier transforming Eq.(43), the real-space linear response
function takes the form

xsrd = − bncfdsr d + nchccsrdg, s44d

where

hccsrd = −
bz2e2

e

e−kr

r
s45d

is the counterion-counterion pair correlation function[69],
which has Yukawa form, with screening constantk. Equation

(44) makes clear that there are two physically distinct types
of counterion response: local response, associated with coun-
terion self correlations, and nonlocal response, associated
with counterion pair correlations.

At this point, we can specify the constantr0 in Eq. (15).
Combining Eq.(43) with the long-wavelength limit of the
macroion-counterion interaction,v̂mcskd→4pZze2/ek2, as k
→0, we have

lim
k→0

fxskdv̂mcskdg = Z/z. s46d

Thus, the linear response term in Eq.(15) already ensures
proper normalization ofrcsr d, which implies thatr0=0.

Proceeding to nonlinear response, we first note that the
three-particle structure factor obeys the identity

Ss3dsk,k8d = SskdSsk8dSsuk + k8udf1 + nc
2 ĉs3dsk,k8dg,

s47d

whereĉs3dsk ,k8d is the Fourier transform of the three-particle
direct correlation function. Within the RPA, however,cs3d

and all higher-order DCFs vanish. Thus, from Eqs.(21),
(22), and (47), the first nonlinear response function can be
expressed in Fourier space as

x8sk,k8d = −
kBT

2nc
2 xskdxsk8dxsuk + k8ud s48d

and in real space as

x8sr 1 − r 2,r 1 − r 3d = −
kBT

2nc
2 E dr xsur 1 − r udxsur 2 − r ud

3xsur 3 − r ud. s49d

Higher-order nonlinear counterion response leads to higher-
order terms in the effective Hamiltonian[Eq. (31)]. For ex-
ample, the effective four-body interaction takes the form

v̂eff
s4dsk,k8,k9d = 6x9sk8,k9,− k − k8 − k9dv̂mcskdv̂mcsk8d

3v̂mcsk9dv̂mcsuk + k8 + k9ud, s50d

where

x9sk,k8,k9d =
− b3

3!
ncS

s4dsk,k8,k9d s51d

is the next higher-order nonlinear response function and

Ss4dsk,k8,k9d = SskdSsk8dSsk9dSsuk + k8 + k9udfSsuk + k8ud

+ Ssuk8 + k9ud + Ssuk + k9ud − 2g s52d

is the four-particle structure factor in the RPA. Just as effec-
tive three-body interactions are related to corrections at the
two- and one-body levels, so four-body interactions entail
corrections at the three-, two-, and one-body levels, which
(in Fourier space) are proportional to appropriate summa-
tions of v̂eff

s4dsk ,k8 ,k9d over the wave vectorsk, k8, andk9. In
principle, these higher-order corrections could be computed
to further check for convergence of the perturbation expan-
sion.
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IV. RESULTS

A. Counterion density

A practical expression for the ensemble-averaged counter-
ion density is now obtained by substituting the linear and
first nonlinear RPA response functions[Eqs. (43) and (48)]
into the expansion forkr̂cskdl [Eq. (20)]. The result may be
expressed in the form

kr̂cskdl = r̂c0skd −
xskd

2bnc
2V8

o
k8

r̂c0sk8dr̂c0sk − k8d, k Þ 0,

s53d

where

r̂c0skd = xskdv̂mcskdr̂mskd, k Þ 0, s54d

is the Fourier transform of the linear-response counterion
density and v̂mcskd is the transform of the macroion-
counterion interaction(specified below). Inverse transform-
ing Eq. (53) yields

krcsr dl = rc0sr d −
1

2bnc
2 E dr 8 xsur − r 8udfrc0sr 8dg2,

s55d

where

rc0sr d = o
i=1

Nm

r1sur − Riud s56d

is the real-space linear response counterion density in the
presence of macroions fixed at positionsRi, expressed as a
sum of single-macroion counterion density orbitals
r1srd—the inverse transform ofr̂1skd=xskdv̂mcskd. Equiva-
lently

rc0sr d =E dr 8 xsur − r 8udo
i=1

Nm

vmcsur 8 − Riud. s57d

Now substitution of Eqs.(44) and (45) for the real-space
RPA linear response function into Eqs.(55) and (57) allows
the linear-response counterion density profile to be expressed
as

rc0sr d = bnco
i=1

Nm F− vmcsur − Riud

+
k2

4p
E dr 8

e−kur−r8u

ur − r 8u
vmcsur 8 − RiudG s58d

and the nonlinear profile as

krcsr dl = rc0sr d +
1

2nc
frc0sr dg2

−
k2

8pnc
E dr 8

e−kur−r8u

ur − r 8u
frc0sr 8dg2. s59d

The last two terms on the right side of Eq.(59) are nonlinear
corrections to the linear profile and can be physically inter-

preted as arising, respectively, from local and nonlocal non-
linear response of counterions to the macroion charge.

The linear-response counterion profile in the presence of a
distributionof macroions can be obtained by ensemble aver-
aging Eq.(54) over macroion coordinates. In Fourier space

kr̂c0skdlm = r̂1skdkr̂skdlm, s60d

whereklm again represents a trace over macroion coordinates
andkr̂skdlm is the Fourier component of the average density
of macroions. In real space, the average density of counteri-
ons around a central macroion can then be expressed as

krc0sr dlm = r1sr d + nmE dr 8 gmmsr 8dr1sur − r 8ud, s61d

where gmmsr d is the macroion-macroion pair distribution
function. The latter function may be obtained from integral-
equation theory or simulation, with effective interactions as
input.

B. Macroion-counterion interaction

To this point, the theory makes no assumptions about the
type of macroion. Practical calculations require specifying
the macroion structure, the macroion-counterion interaction,
and the corresponding single-macroion counterion density
orbital. Henceforth, we specialize to charged hard-sphere
colloidal macroions. A convenient strategy, proposed in Ref.
[30] and adopted in Refs.[33,34], specifiesvmcsrd inside the
hard coresr ,ad so as to minimize counterion penetration.
We thus assume

vmcsrd =5
− Zze2

er
, r . a

− Zze2

ea
a, r , a

s62d

and choose the parametera appropriately. In passing, we
note thatvmcsrd plays a role here analogous to that of an
empty-core pseudopotential in the pseudopotential theory of
simple metals[65,66]. As shown in Refs.[30,33], at the level
of linear response, penetration of counterions inside the mac-
roion cores is eliminated by choosinga=ka/ s1+kad. This
choice yields

v̂mcskd = −
4pZze2

es1 + kadk2Fcosskad +
k

k
sinskadG s63d

and

r1srd = 5Z

z

k2

4p

eka

1 + ka

e−kr

r
, r . a

0, r , a,

s64d

which is precisely the DLVO expression for the density of
counterions around an isolated macroion[27,28]. The above
choice for the parametera ensures that the linear term and
first nonlinear term of Eq.(59) vanish completely inside the
macroion core. The same parametrization also allows, how-
ever, the final nonlinear term in Eq.(59) to be nonzero inside
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the core, although in practice the fractional penetration is at
most a few percent. Independent of parametrization, Eqs.
(55), (56), and(59) maintain charge neutrality by preserving
the number of counterions, sinceedr r1sr d=Z/z and
edr xsrd=xsk=0d=0.

Another artifact of the present scheme, apparent from Eq.
(56), is that the counterion density profile around a given
macroion overlaps the hard cores of neighboring macroions.
More general parametrizations of the macroion-counterion
interaction than Eq.(62) could conceivably eliminate coun-
terion penetration within all cores. An alternative strategy
would incorporate excluded volume constraints directly into
the response functions, which then would more properly de-
scribe the Swiss cheese OCP. In such a scheme,xsur −r 8ud
would strictly vanish when eitherr or r 8 falls inside a hard
core. This condition—not obeyed by Eqs.(43) and (48)—
would enforce exclusion of counterions from all macroion
cores. Nevertheless, in the current scheme, the extent of core
overlap is minor for macroion separations that significantly
exceed the screening lengthk−1, which is usually the case in
practice.

C. Effective interactions

The effective interactions can be expressed in real space
by evaluating the respective inverse Fourier transforms.
From Eqs.(28) and (48), the effective triplet interaction is

veff
s3dsr 1 − r 2,r 1 − r 3d = −

kBT

nc
2 E dr r1sur 1 − r ud

3r1sur 2 − r udr1sur 3 − r ud. s65d

Equations(25) and (26), combined with Eqs.(43) and (63),
yield the linear-response prediction for the effective pair in-
teraction[33]:

v0
s2dsrd =

Z2e2

e
S eka

1 + ka
D2e−kr

r
, r . s, s66d

identical to the familiar DLVO screened-Coulomb potential
in the limit of widely separated macroions[27,28], while Eq.
(33) yields the first nonlinear correction

Dveff
s2dsrd = −

kBT

nc
2 E dr 8 r1sr8dr1sur − r 8udFr1sur − r 8ud −

nc

3
G .

s67d

The total effective pair potential is given byveff
s2dsrd=v0

s2dsrd
+Dveff

s2dsrd. Note the distinction between the effective pair po-
tential, which is the interaction between a pair of macroions
in a colloidal suspension of arbitrary concentration, and the
potential of mean force, which is the interaction between an
isolated pair of macroions, i.e., the low-density limit of
veff

s2dsrd.
The volume energy can be expressed—by combining Eqs.

(25), (28), (35), (36), and (63)—as the sum of the linear
response prediction[33]:

E0 = FOCP− Nm
Z2e2

2e

k

1 + ka
−

NckBT

2
, s68d

and the first nonlinear correction

DE = −
NmkBT

6nc
2 HE dr fr1srdg3 − ncE dr fr1srdg2J . s69d

The first and second terms on the right side of Eq.(68)
account, respectively, for the counterion entropy and the
macroion-counterion electrostatic interaction energy, while
Eq. (69) corrects the latter term for nonlinear response. The
final terms on the right sides of Eqs.(67)–(69) originate from
the charge neutrality constraint.

D. Effect of added salt

Finally, we generalize the above results to the case of
nonzero salt concentration. The average number density(in
the free volume) of salt ion pairs,ns=Ns/V8, is supposed
maintained by exchange of salt ions with a salt reservoir
through a semipermeable membrane. The total average mi-
croion density is thennm=n++n−=nc+2ns, wheren± are the
average number densities of positive/negative microions.
Following Ref.[34], the Hamiltonian generalizes to

H = Hm + Hm + Hm+ + Hm−, s70d

whereHm is the Hamiltonian of the microions(counterions
plus salt ions) andHm± are the electrostatic interaction ener-
gies between macroions and positive/negative microions.
The presence of positive and negative microion species re-
quires a proliferation of response functions,xi j and xi jk8 ,
i , j ,k=±, and a generalization of Eq.(44) to

x++srd = − bn+fdsr d + n+h++srdg, s71ad

x+−srd = − bn+n−h+−srd, s71bd

x−−srd = − bn−fdsr d + n−h−−srdg, s71cd

wherehijsrd, i , j =±, are the bulk microion two-particle pair
correlation functions, which depend implicitly onn±. Gener-
alizing Eq. (20), the ensemble-averaged microion number
densities are given by

kr̂±skdl = ± x±skdv̂m+skdr̂mskd +
1

V8
o
k8

x±8sk8,k − k8d

3v̂m+sk8dv̂m+suk − k8udr̂msk8dr̂msk − k8d + ¯

sk Þ 0d, s72d

where we have exploited symmetries:v̂m+=−v̂m−, x+−=x−+,
x++−8 =x+−+8 , etc., to define composite response functions as
x+=x++−x+−, x−=x−−−x+−, x+8=x+++8 −2x++−8 +x+−−8 , and x−8
=x−−−8 −2x−+−8 +x−++8 . Substituting Eq.(72) into the multi-
component Hamiltonian[Eq. (70)], the macroion-microion
interaction contribution can be expressed as
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Hm+ + Hm− =
1

V8
o

k
xskdfv̂m+skdg2r̂mskdr̂ms− kd

+
1

V82o
k,k8

x8sk8,− k − k8d

3 v̂m+skdv̂m+sk8dv̂m+suk + k8ud

3r̂mskdr̂msk8dr̂ms− k − k8d, s73d

where the linear and first nonlinear response functions are
now redefined as the following combinations ofxi j andxi jk8 :

x = x+ + x− = x++ − 2x+− + x−− s74d

and

x8 = x+8 − x−8 = x+++8 − 3x++−8 + 3x+−−8 − x−−−8 . s75d

The net effect of adding salt is to modify the previous salt-
free results as follows. First, the average counterion density
nc in the Debye screening constantk and in the linear re-
sponse function[Eq. (43)] must be replaced by the total av-
erage microion densitynm. Thus,k→Î4pnmz2e2/ekBT and
xskd→−bnmSskd. The first nonlinear response function re-
tains its original form[Eq. (48)], but with the new definition
of k. The second modification is in the linear-response vol-
ume energy[Eq. (68)], which becomes[34,70]:

E0 = Fplasma− Nm
Z2e2

2e

k

1 + ka
−

kBT

2

sN+ − N−d2

N+ + N−
, s76d

whereFplasmais the free energy of the unperturbed microion
plasma. Finally, the effective triplet interaction and nonlinear
corrections to the effective pair interaction and volume en-
ergy are generalized as follows:

DE = −
NmkBT

6

sn+ − n−d
nm

3 HE dr fr1srdg3 − nmE dr fr1srdg2J ,

s77d

Dveff
s2dsrd = − kBT

sn+ − n−d
nm

3 E dr 8 r1sr8dr1sur − r 8ud

3Fr1sur − r 8ud −
nm

3
G , s78d

veff
s3dsr 1 − r 2,r 1 − r 3d = − kBT

sn+ − n−d
nm

3 E dr r1sur 1 − r ud

3r1sur 2 − r udr1sur 3 − r ud. s79d

Equations(77)–(79) [combined with Eq.(64) for r1srd]
are the main new results for nonlinear effective interactions.
These expressions imply that nonlinear effects increase in
strength with increasing macroion charge, increasing macro-
ion concentration, and decreasing salt concentration, and that
effective triplet interactions are consistently attractive. These
results also imply that in the limit of zero macroion concen-
tration snc=n+−n−→0d, or of high salt concentrationsnm

→`d, such thatsn+−n−d /nm→0, the leading-order nonlinear
corrections all vanish. This dilute limit follows naturally

from the fact that, for a pure symmetric electrolyte, response
functions related by symmetry are equal(x+++8 =x−−−8 , x++−8
=x+−−8 ), and so, from Eq.(75), the nonlinear response func-
tion x8 is zero. This result—a consequence of charge neu-
trality that is analogous to the vanishing of the first nonlinear
(quadratic) term in the expansion of the nonlinear PB
equation—may partially explain the surprisingly broad range
of validity of DLVO theory for high-ionic-strength suspen-
sions. Nevertheless, even in dilute suspensions at high ionic
strength, higher-order nonlinear corrections do not necessar-
ily vanish. For this reason, predictions of the first-order non-
linear theory in the dilute limit may deviate from numerical
solutions of the full nonlinear PB equation, which include,
by construction, nonlinear corrections to all orders. The first-
order corrections are nonetheless valuable in signaling the
onset of nonlinearity, as shown below.

Equations(78) and (79) may be compared with related
expressions derived via the density-functional approach.
Equation(78) is similar in structure to an expression for a
wall-induced effective pair interaction derived by Goulding
and Hansen[56,57] {Eq. (13) of Ref. [56]}, if one factor of
r1srd in Eq. (78) is replaced by a wall counterion density
orbital. It should be noted that these authors neglected the
bulk nonlinear correction derived here[Eq. (78)], which is
justified only in the dilute limit of an isolated pair of macro-
ions. Equation(79) is similar to an expression for the triplet
interaction derived by Löwen and Allahyarov[58], differing
only by a factor ofsn+−n−d /nm and by our excluded-volume
correction in the definition ofk.

E. Analytical expressions for effective interactions

Quantitative predictions of nonlinear response theory are
facilitated by reducing the effective interactions to computa-
tionally practical analytical forms. Substituting Eq.(64) into
Eq. (77), and evaluating the integrals, the nonlinear correc-
tion to the volume energy can be expressed as

DE =
NmkBT

6

sn+ − n−d
nm

3 FZ2k3nm

8p
S 1

1 + ka
D2

−
Z3k6

s4pd2S eka

1 + ka
D3

E1s3kadG , s80d

where E1 is the exponential integral function[71]:

E1sxd =E
1

`

du
e−xu

u
, x . 0. s81d

Similarly, the nonlinear correction to the effective pair po-
tential can be rendered analytically. The key is expressing the
integral I1srd;edr 8r1sr8dfr1sur −r 8udg2 in Eq. (78) in the
form I1=F −1hr̂1skdr̂2skdj, wherer̂2skd;F hfr1srdg2j, with F
denoting the Fourier transform operator andF −1 its inverse.
Substituting Eq.(64) into Eq. (78), Dveff

s2dsrd reduces, after
some algebra, to
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Dveff
s2dsrd = f1srd

e−kr

r
+ f2srd

ekr

r
+ f3srd

e−ka

r
, r . s,

s82d

where

f1srd = C1fksr − sd + 1 −e−ksg + C2fE1„ksr − ad… + E1s3kad

− E1skadg, s83d

f2srd = − C2 E1„3ksr + ad…, s84d

and

f3srd = C2fE1„2ksr + ad… − E1„2ksr − ad…g, s85d

with

C1 =
1

6

sn+ − n−d
nm

Z2e2

e
S eka

1 + ka
D2

s86d

and

C2 =
1

8p

sn+ − n−d
nm

2

Z3e2k3

ze
S eka

1 + ka
D3

. s87d

It is interesting to examine the asymptoticsr →`d behav-
ior of the leading-order nonlinear response approximation to
the effective pair interaction. From Eqs.(82)–(85), using the
inequality E1sxd,e−x/x, we find the asymptotic limit

lim
r→`

veff
s2dsrd = C1k e−kr , s88d

which exhibits a more gradual decay than the screened-
Coulomb DLVO potential[Eq. (66)]. We emphasize that this
result does not contradict measurements of DLVO-like inter-
actions between isolated pairs of macroions in dilute suspen-
sions[12], since in the dilute limitC1→0 and the asymptotic
behavior reduces to that of linear response. The physical sig-
nificance of Eq.(88) may be limited, however, by the neglect
of higher-order nonlinear terms and shielding by intervening
macroions [72] at distances beyond the mean nearest-
neighbor separation,r . f3/s4pnmdg1/3.

V. NUMERICAL INVESTIGATIONS AND DISCUSSION

To quantitatively illustrate the influence of nonlinear
screening, we compute counterion density profiles and effec-
tive pair and triplet interactions for selected system param-
eters. All results presented are for the case of monovalent
counterionssz=1d and aqueous suspensions at room tem-
peratureslB=0.714 nmd. Figure 3 compares the counterion
density profile around a single macroion of diameters
=100 nm and valencesZ=100 and 500 in a dilutesh
=0.01d salt-free suspension, as predicted by linear response
(DLVO) theory [Eq. (57)] and by first-order nonlinear re-
sponse theory[Eq. (59)]. The linear-response counterion
densityrc0sr d is approximated here by a single orbitalr1srd
[Eq. (64)]. Evidently, nonlinear response sharpens the distri-
bution of counterions around a macroion.

Figure 4 compares the linear and nonlinear response pre-
dictions for the effective pair interaction, now forZ=400 (a)

and 700(b) and with small concentrations of added salt. As a
check on the calculations, the interactions were computed
both by Monte Carlo integration of Eq.(78) and from the
analytical expressions[Eqs. (82)–(87)], the results being
identical to within numerical error. Enhanced screening, re-
sulting from the sharper nonlinear counterion profiles around
macroions, has the general effect of weakening the pair in-
teractions. For a given macroion diameter, nonlinear correc-
tions increase in magnitude with increasing macroion va-
lence and concentration and with decreasing salt
concentration. Qualitatively, our predictions are consistent
with the recent observations of Durand and Franck[73] of
surprisingly short-ranged pair correlations in highly deion-
ized colloidal suspensions. A quantitative comparison, how-
ever, would require computing the radial distribution func-
tion gsrd from our veff

s2dsrd, by means of integral-equation
theory or simulation, or computingveff

s2dsrd from the experi-
mentalgsrd data. Note that the effective pair potential dis-
cussed here is distinct from the potential of mean force
vmfsrd, which was obtained in Ref.[73] from the experimen-
tally measuredgsrd via the definitionvmfsrd=−kBT ln gsrd.

In Fig. 4(c), the parameters(macroion diameter,s
=652 nm, and volume fraction,h=0.0352) are chosen to
compare with the experiments of Larsen and Grier[10] in
which unusually long-lived metastable face-centered-cubic
(fcc) crystallites were observed. The macroion valence here
is set to the maximum consistent with charge renormalization
[74], Z* ,Os10dsa/lBd.5000, assuming the charge of a
macroion to be reduced in bulk compared with its value in
isolation[75]. While the pair interaction remains repulsive, it

FIG. 3. Ensemble-averaged counterion density around a single
macroion for macroion diameters=100 nm and valence(a) Z
=100,(b) Z=500, at volume fractionh=0.01 and zero salt concen-
tration. Dashed curves: linear response theory. Solid curves: nonlin-
ear response theory(first-order correction).
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is significantly weaker than the DLVO prediction over a
range comparable to the macroion diameter. A weaker pair
interaction could promote the influence of three-body attrac-
tions, as well as interactions ignored by mean-field theory,
such as short-range counterion fluctuation-induced attrac-
tions [25,40]. In this way, nonlinear response may contribute
to explaining experimental evidence for apparent attractions

between like-charged macroions. The phase behavior of
highly charged colloidal crystals will be the subject of a fu-
ture study.

The insets to Fig. 4 illustrate the extent to which the ef-
fective pair interaction may be fit by a screened-Coulomb
(DLVO) potential. For sufficiently weak nonlinearity[Fig.
4(a)], veff

s2dsrd may be reasonably fit by a DLVO potential with
the same screening constant but a lower(renormalized) ef-
fective charge. The tendency of nonlinear screening to pre-
serve the DLVO form of potential is consistent with conclu-
sions from PB cell model calculations[74], ab initio
simulations[21,22], and optical tweezer experiments[10],
all of which support the bulk DLVO potential in the weakly
nonlinear regime. In the more strongly nonlinear regime
[Figs. 4(b) and 4(c)], however, our calculations indicate that
effective pair interactions may deviate significantly from
DLVO form. In this regime, ifveff

s2dsrd can be fit at all by a
DLVO potential, then it is only over a limited range and only
by allowing renormalization of both the charge and screening
constant. Similar departures from DLVO behavior with in-
creasing macroion-counterion coupling strength have been
predicted by integral-equation theories[43–49].

Although in the physically relevant range of macroion
valence sZ,Z*d the predicted pair interaction is always
purely repulsive, at higher(unphysical) valencessZ.Z*d the
leading-order nonlinear theory predicts thatveff

s2dsrd can de-
velop an attractive well at sufficiently high macroion concen-
trations. Mathematical proofs[76–78] have recently shown,
however, that PB theory cannot yield pair attraction—at least
between a pair of isolated macroions. Since the RPA used
here is formally equivalent to mean-field PB theory(see Ap-
pendix), the emergence of an attractive pair potential is best
interpreted as a sign that higher-order nonlinear terms must
then be included.

As a quantitative test of the nonlinear response theory, we
compare predictions with available data from theab initio
simulations of Tehveret al. [21]. By assuming a counterion
density orbital and ignoring counterion density fluctuations,
the ab initio approach provides the most direct test of the
theory. Figure 5(a) presents the comparison for the total po-
tential energy of interaction between a pair of macroions, of
diameters=106 nm and valenceZ=200, in a cubic box of
length 530 nm with periodic boundary conditions(taking
into account image interactions) in the absence of salt. The
theory is in essentially perfect agreement with simulation,
although nonlinear effects, for these parameters, are rela-
tively weak. Figure 5(b) shows results for a higher valence
sZ=700d, for which case simulation data are not yet avail-
able, but where nonlinear effects are more prominent. Fur-
ther simulations of more highly charged macroions would
more severely test the theory—in particular, convergence of
the perturbation expansion—in the strongly nonlinear re-
gime.

To quantify the range of validity of the linear response
approximation and to measure the impact of nonlinear
screening on thermodynamics, we calculate the magnitude of
the leading-order nonlinear correction to the pair interaction
Dveff

s2dsrd at the mean nearest-neighbor separationrnn, where
pair interactions contribute most to the potential energy. Fig-

FIG. 4. Effective pair interactions for macroion diameters, va-
lence Z, volume fraction h, and salt concentrationcs: (a) s
=100 nm,Z=400, h=0.01, cs=1 mM; (b) s=100 nm,Z=700, h
=0.01, cs=1 mM; (c) s=652 nm, Z=5000, h=0.0352, cs

=0.2 mM (chosen to compare with Ref.[10]). Dashed curves: linear
response prediction. Solid curves: nonlinear response prediction.
The insets show that for sufficiently weakly charged macroions(a)
the effective pair interaction may be fit by a Yukawa potential(with
a lower effective charge), while for more highly charged macroions
(b,c) deviations from linear behavior can be significant.
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ure 6 maps out, in the space of macroion volume fractionh
and salt concentrationcs (measured inmM), the boundary of
the region within whichuDveff

s2dsrnndu exceeds typical thermal
energies, for the fcc crystal structure:rnn/s
=2−1/2s2p /3hd1/3. For points above the boundary curves,
uDveff

s2dsrnndu.1 kBT [Fig. 6(a)] or 0.1kBT [Fig. 6(b)]. Points
on the boundary curves in Fig. 6 correspond to thermody-
namic states for which a stable fcc crystal phase is predicted
by simulations of model Yukawa systems[17], although
these simulations do not include influences of the volume
energy. With increasingZ and decreasingcs, the thresholdh
decreases. Thus, nonlinear screening is anticipated to in-
creasingly influence thermodynamics with increasing macro-
ion charge and concentration and with decreasing ionic
strength—just the conditions under which anomalous phase
behavior has been observed[6–10].

Moving beyond pair interactions, Fig. 7 shows the effec-
tive three-body interaction between a triplet of macroions
arranged in an equilateral triangle fors=100 nm and two
different valences,Z=500 and 700. The interactions were
computed numerically by Monte Carlo integration of Eq.
(79). The strength of the interaction is seen to grow rapidly
with increasing macroion valence and with decreasing sepa-
ration between macroion cores. In a concentrated suspension

of highly charged macroions, effective many-body interac-
tions may become significant. In particular, as noted above,

FIG. 5. Total interaction potential energy for two macroions, of
diameters=106 nm and valence(a) Z=200,(b) Z=700, in a cubic
box of length 530 nm with periodic boundary conditions at zero salt
concentration. The potentials are shifted to zero at maximum mac-
roion separation. Dashed curves: linear response prediction. Solid
curves: nonlinear response prediction. Symbols:ab initio simulation
data[21].

FIG. 6. Map of nonlinear deviations from linear response theory
for macroions of diameters=100 nm and valences, from top to
bottom, Z=500,600,700, for fcc crystal structure. Systems with
macroion volume fractionsh and salt concentrationscs above the
respective curves deviate from the linear response pair potential at
the fcc nearest-neighbor distance by at least(a) 1 or (b) 0.1 kBT.

FIG. 7. Effective three-body interaction between three macro-
ions, arranged in an equilateral triangle of side lengthr, with mac-
roion diameters=100 nm, valenceZ=500 (open circles), Z=700
(filled circles), volume fractionh=0.01, and salt concentrationcs

=1 mM. Computed by Monte Carlo integration of Eq.(79), with
numerical errors comparable to symbol size.
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triplet attractions may well contribute to the surprising meta-
stability of colloidal crystallites observed in deionized sus-
pensions[10].

To again test the theory against simulation, we compute
the force on a macroion in an equilateral-triangle configura-
tion of three macroions as a function of the triangle edge
length. On expanding a triangle from edge lengthR−DR/2
to R+DR/2, the energy changes by

DU = 3Fveff
s2dSR+

DR

2
D − veff

s2dSR−
DR

2
DG + veff

s3dSR+
DR

2
D

− veff
s3dSR−

DR

2
D . s89d

Since, as the triangle expands, each of the three macroions
moves a distanceDR/Î3 parallel to the total effective force
F acting on it, the change in energy also may be expressed as
DU=−3FDR/Î3. Equating the two expressions forDU, the
total force can be written as

FsRd = Fs2dsRd + Fs3dsRd, s90d

where

Fs2dsRd =
− Î3

DR
Fveff

s2dSR+
DR

2
D − veff

s2dSR−
DR

2
DG s91d

and

Fs3dsRd =
− 1

Î3DR
Fveff

s3dSR+
DR

2
D − veff

s3dSR−
DR

2
DG s92d

are the effective pair and triplet forces, respectively.
To compare directly with available simulation data[21],

we consider macroions of diameters=106 nm in a cubic
box of length 1000 nm with periodic boundary conditions in
the absence of salt. Over a range of macroion valences, we
compute the sum of linear(DLVO) effective pair forces, the
sum of nonlinear effective pair forces, the effective triplet
force, and the total effective force(sum of pair and triplet
forces), from Eqs.(90)–(92). For a valence ofZ=200—the
only case for which simulation data were reported[21]—the
predicted total force is essentially identical to the sum of pair
forces, consistent with Ref.[21], in which an absence of
many-body effects was concluded. For higher valences, how-
ever, three-body forces arenot negligible. Figure 8 presents
predictions of the theory forZ=700 and 1000, demonstrating
significant deviations of the total force from the sum of pair
forces. For the caseZ=1000, which somewhat exceeds the
charge-renormalization limit[74], the predicted total force
actually becomes attractive beyondr .2s, although this is
likely an artifact of truncating the perturbation series and
thereby neglecting higher-order nonlinear terms. Again, fur-
ther simulations could help to resolve the issue.

Other workers have investigated many-body interactions
in charged colloids. Schmitz[79] has developed a theory that
describes sharing of counterions between macroions, analo-
gous to molecular chemical bonding, and used the theory to
study the influence of many-body effects on counterion dis-
tributions and the structure of colloidal crystals. Sear[80],
exploring a phenomenological model, showed that interac-

tions among particles with internal degrees of freedom are,
in general, nonpairwise additive, and that triplet interactions
may be attractive at the same time that pair interactions are
repulsive. Recently, Russet al. [81] solved the nonlinear PB
equation for triplets of macroions immersed in an electrolyte.
Their conclusion that three-body effects are always cohesive
agrees qualitatively with our results, and those of Ref.[58].
We note, however, that three-body contributions to the grand
potential, calculated in Ref.[81], are not directly comparable
to three-body interactions in the effective Hamiltonian, cal-
culated here and in the simulations of Tehveret al. [21]. In
another study, Wuet al. [82] extracted three-body forces
from Monte Carlo simulations of macroion triplets in equi-
lateral configurations. These authors found attractive electro-
static three-body forces, but also detected a significant repul-
sive contribution attributable to hard-sphere collisions
between macroions and microions, which were modeled in
the simulations as charged hard spheres. Future extension of
the response theory from point microions to hard-core micro-
ions would allow a more direct comparison with these Monte
Carlo data.

Influences on thermodynamic phase behavior of nonlinear
corrections to both effective interactions and the volume en-

FIG. 8. Predicted force on a macroion in an equilateral-triangle
arrangement of three macroions, each of diameters=106 nm and
valence(a) Z=700, (b) Z=1000, in a cubic box of length 1000 nm
with periodic boundary conditions at zero salt concentration.
Dashed curves: sum of linear response effective pair forces. Solid
curves: sum of nonlinear effective pair forces. The symbols are
theoretical predictions for the effective triplet force(open circles)
and the total(pair plus triplet) effective force(filled circles).
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ergy are now being explored. It may be anticipated that these
corrections will be especially significant for deionized sus-
pensions of highly charged macroions. Preliminary calcula-
tions of free energies and phase diagrams[83] indicate that
the spinodal-instability mechanism proposed to describe
phase separation[30,31] remains qualitatively valid—at least
under the assumption of fixed macroion charge—but that
nonlinearity can significantly shift the phase boundaries and,
in some cases,enhancethe tendency toward phase separa-
tion.

The role of nonlinear response and of effective many-
body interactions in dense electron-ion(metallic) systems
has long been recognized and discussed[84–88]. In this con-
text, it has been argued that nonlinear corrections to pair
potentials and structure factors either are weak[88] or can be
incorporated into the linear response scheme[87], but that
nonlinear corrections to the volume energy and thermody-
namic properties(e.g., bulk modulus) are more significant
[86]. Whether the same argument applies also to colloidal
systems is being investigated in ongoing studies of phase
behavior[83].

VI. SUMMARY AND CONCLUSIONS

In summary, by incorporating nonlinear microion screen-
ing into a mean-field response theory of charged colloids in
the primitive model, we have derived nonlinear corrections
to the effective electrostatic interactions between hard
spherical macroions in bulk colloidal suspensions. The key
physical concept is that nonlinear screening entails both ef-
fective many-body interactionsand essential corrections to
the effective pair potential and the one-body volume energy.
Effective triplet interactions are predicted to be always at-
tractive, consistent with previous work[58,81]. The effective
pair potentialveff

s2dsrd, which in the linear(DLVO) theory has
screened-Coulomb form, is shortened in range by the influ-
ence of nonlinear screening, but remains purely repulsive
within the physically reasonable range of renormalized mac-
roion charges. Predictions forveff

s2dsrd are in essentially perfect
agreement with availableab initio simulation data[21]. The
theory also predicts that triplet forces are negligible between
weakly charged macroions, consistent with simulation[21],
but can be significant for higher macroion charges. Further
simulations of more highly charged and concentrated macro-
ions are now required to more severely test the theory.

Analytical and numerical results confirm that nonlinear
effects become qualitatively stronger with increasing macro-
ion charge, increasing macroion concentration, and decreas-
ing salt concentration. In the dilute limit of zero macroion
concentration, but nonzero salt concentration, leading-order
nonlinear corrections vanish. Perhaps the most practical ap-
plication of the response theory, illustrated here, is to map-
ping out the parameter ranges within which linear theories
can be trusted. Future work will explore implications of non-
linear screening for thermodynamic properties, in particular,
the phenomenon of phase separation at low salt concentra-
tions and the stability of deionized charged colloidal crystals.
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APPENDIX: COMPARISON WITH RELATED
THEORETICAL APPROACHES

1. Response theory versus Poisson-Boltzmann theory

We demonstrate here that response theory, when com-
bined with the RPA for the microion response functions(see
Sec. III E) is formally equivalent to Poisson-Boltzmann
theory. The ensemble-averaged number density profile of
positive microions, in the presence of the macroion potential
fextsr d, is given exactly by the Euler-Lagrange equation
[63,89]:

r+sr d =
ebm+

L+
3 exph− bzefextsr d + c+

s1dsr ;fr+sr d,r−sr dgdj,

sA1d

which follows from minimization of the grand potential
functional with respect tor+sr d. In Eq. (A1), m+ and L+

denote the chemical potential and thermal de Broglie wave-
length of the positive microions,fextsr d is the “external”
electrostatic potential of the macroions, and
c+

(1dsr ; fr+sr d ,r−sr dg) is the one-particle DCF of the positive
microions, which is a functional of the inhomogeneous mi-
croion densities. Expandingc+

s1d(r ; fr+sr d ,r−sr dg) in a func-
tional Taylor series about the average(bulk) microion densi-
ties,n+ andn−, we have

r+sr d =
ebm+

L+
3 expH− bzefextsr d + c+

s1dsn+,n−d

+E dr 8 c++
s2dsur − r 8u;n+,n−dfr+sr 8d − n+g

+E dr 8 c+−
s2dsur − r 8u;n+,n−dfr−sr 8d − n−g + ¯J ,

sA2d

where cij
s2dsr ;n+,n−d, i , j =±, are the bulk microion two-

particle DCFs, which are related to the one-particle DCFs via

cij
s2dsur − r 8u;n+,n−d = lim

r±sr d→n±

Hdci
s1d
„r ;fr+sr d,r−sr dg…

dr jsr 8d
J .

sA3d

We now make the mean-field random phase approxima-
tion [63]: (1) neglecting three-particle and higher-order cor-
relations, i.e., truncating the series in Eq.(A2), and (2) ig-
noring short-range pair correlations by simply equating
cij

s2dsr ;n+,n−d to their asymptotic long-range limits

cij
s2dsr ;n+,n−d . − bvi jsrd, i, j = ± . sA4d

Equation(A2) then becomes
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r+sr d . n+ expS− bhzefextsr d +E dr 8 v++sur − r 8ud

3fr+sr 8d − n+g +E dr 8 v+−sur − r 8udfr−sr 8d − n−gjD
=n+ expf− bzefsr dg, sA5d

where we have usedn+=sebm+/L+
3dexpfc+

s1dsn+,n−dg and have
identified

fsr d = fextsr d +E dr 8
ze

eur − r 8u
fr+sr 8d − n+ − r−sr 8d + n−g

sA6d

as thetotal electrostatic potential, due to both the macroions
and the surrounding microions. Similarly, the density profile
of negative microions is given by

r−sr d . n− expS− bh− zefextsr d +E dr 8 v+−sur − r 8ud

3fr+sr 8d − n+g +E dr 8 v−−sur − r 8udfr−sr 8d − n−gjD
=n− expfbzefsr dg. sA7d

Combining Eqs.(A5) and (A7) with the Poisson equation

¹2fsr d = −
4p

e
hzer+sr d − zer−sr dj, sA8d

we obtain

¹2fsr d = −
4pze

e
hn+ expf− bzefsr dg − n− expfbzefsr dgj,

sA9d

which is the PB equation for macroions in a symmetricz:z
electrolyte. We conclude that the RPA-based response theory
is formally equivalent to the mean-field PB theory. This is
not surprising, given that both approaches neglect microion
correlations. Response theory, however, provides a powerful
framework for going beyond a mean-field description by sys-
tematically including microion correlations via more accu-
rate approximations for the response functions of the micro-
ion plasma.

2. Response theory versus integral equation theory

Here we show that linear response theory is equivalent to
a linearized HNC approximation in integral-equation theory.
Substituting Eqs.(71) into the Fourier transform of Eq.(72),
the linear response expressions for the ensemble-averaged
number density profiles of positive and negative microions
are

r+sr d
n+

= 1 −bo
i
Hvm+sur − Riud +E dr 8fn+h++sur − r 8ud

− n−h+−sur − r 8udgvm+sur 8 − RiudJ sA10d

and

r−sr d
n−

= 1 +bo
i
Hvm+sur − Riud +E dr 8fn−h−−sur − r 8ud

− n+h+−sur − r 8udgvm+sur 8 − RiudJ . sA11d

On the other hand, from Eq.(A2), we have the exact rela-
tions

r+sr d = n+ expH− bo
i

vm+sur − Riud +E dr 8 c++
s2dsur − r 8ud

3fr+sr 8d − n+g +E dr 8 c+−
s2dsur − r 8udfr−sr 8d − n−g

+ ¯J sA12d

and

r−sr d = n− expHbo
i

vm+sur − Riud +E dr 8 c−−
s2dsur − r 8ud

3fr−sr 8d − n−g +E dr 8 c+−
s2dsur − r 8udfr+sr 8d − n+g

+ ¯J . sA13d

Truncating the expansions on the right side of Eqs.(A12)
and(A13) at the level of two-particle correlations amounts to
the HNC approximation in integral-equation theory. If we
further linearize the exponential functions(expanding and
neglecting all but the first two terms), substitute recursively
for r+sr d andr−sr d, and use the Ornstein-Zernike(OZ) rela-
tion for mixtures[63]

hijsrd = cij
s2dsrd + o

k

nkE dr 8 cik
s2dsur − r 8udhkjsr8d,

sA14d

we recover Eqs.(A10) and (A11). Thus, the linear response
approximation is equivalent to a linearized-HNC closure of
the OZ relation, while nonlinear response generates new clo-
sures.
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